推薦系統中常見的算法,包含基於內存的協同過濾及基於模型的協同過濾,在成績矩陣作為輸入資料階段,我們主要探討基於模型協同過濾中的矩陣分解,如圖一。
SVD的結構是將矩陣進行分解,形成三個子矩陣U、Σ和V,其中Σ代表不同維度的重要特徵值,為一正交矩陣,且數值為降冪排列,Steven L. Brunton等人也提及特徵矩陣中數值皆為非負值,因此我們認為每一特徵值可對應到U及 中不同的行或欄,若針對Σ進行門檻的篩選,將矩陣還原後可表示為保留部分特徵值所獲得的訊息量,在相關論文中更以門檻測試來觀察奇異值門檻的保留,其目的為簡化數據,壓縮維度與去除數據噪音。


若將SVD應用於成績矩陣,在使用者登入後取得成績向量,與成績矩陣合併形成測試輸入,根據矩陣分解中的奇異直分解進行運算,可表示為圖三,課程與學生建立的成績矩陣可分解為課程對特徵、特徵對特徵、特徵對學生的子矩陣, 我們會針對特徵矩陣Σ進行門檻的篩選,保留測試學生與訓練學生合併後進行預測的訊息量。


實驗過程省略
我們可以從以上實驗過程中觀察,較佳的參數於SVD門檻介於0.7與0.9之間,因此選擇0.8作為SVD最佳門檻,而Jaccard門檻在各方法艱顯示較佳的門檻為0.6,因此我們將此兩數值做為最佳算法的參數組合
參考文獻
- Shuai Zhang, Lina Yao, Aixin Sun and Yi Tay, “Deep Learning Based Recommender System: A Survey and New Perspectives,” ACM Computing Surveys, Vol. 5, pp. 1-38, 2019.
- Luca Cagliero, Paolo Garza and Elena Baralis, “ELSA: A Multilingual Document Summarization Algorithm Based on Frequent Itemsets and Latent Semantic Analysis,” ACM Transactions on Information Systems (TOIS), Vol. 21, pp. 1-33, 2019.
- Laizhong Cui, Wenyuan Huang, Qiao Yan, F. Richard Yu, Zhenkun Wen and Nan Lu, “A Novel Context-aware Recommendation Algorithm with Two-level SVD in Social Networks,” Future Generation Computer Systems, pp. 1459-1470, 2018.
- Hana Bydžovská, “Course Enrollment Recommender System,” International Conference on Educational Data Mining (EDM), pp. 312-317, 2016.
- Hana Bydžovská, “A Comparative Analysis of Techniques for Predicting Student Performance,” International Conference on Educational Data Mining (EDM), pp. 306-311, 2016.
- Asmaa Elbadrawy and George Karypis, “Domain-Aware Grade Prediction and Top-n Course Recommendation,” ACM Conference on Recommender Systems (RecSys), pp. 183-190, 2016.
- JinHyun Jooa, SangWon Bangb and GeunDuk Parka, “Implementation of a Recommendation System Using Association Rules and Collaborative Filtering,” International Conference on Information Technology and Quantitative Management (ITQM), 2016.
- Menghan Yan, Wenqian Shang and Zhenzhong Li, “Application of SVD technology in video recommendation system,” IEEE/ACIS International Conference on Computer and Information Science (ICIS), pp. 1-5, 2016.
- Xun Zhou, Jing He et al., “SVD-based incremental approaches for recommender systems,” Journal of Computer and System Sciences, Vol. 81, pp. 717-733, 2015.
- Michael D. Ekstrand, Daniel Kluver et al., “Letting Users Choose Recommender Algorithms: An Experimental Study,” ACM Conference on Recommender Systems (RecSys), pp. 11-18, 2015.